Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Foods ; 13(9)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38731793

RESUMEN

Lima beans (Phaseolus lunatus) and adzuki beans (Vigna angularis) are some of the most nutritious underutilized pulses that are significant in being used as basic ingredients for the preparation of various food products. The present study aimed to determine the impact of soaking and germination on nutritional and bioactive components, in vitro protein digestibility, reducing power, metal chelating capacity, antioxidant activity, and anti-nutritional components of lima and adzuki beans. The findings showed that during the germination treatment, the in vitro protein digestibility of lima and adzuki beans increased by 14.75 and 10.98%, respectively. There was an increase in the antioxidant activity of lima beans by 33.48% and adzuki beans by 71.14% after 72 h of germination, respectively. The reducing power assay of lima and adzuki beans indicated an increase of 49.52 and 36.42%, respectively, during germination. Similarly, the flavonoid and metal chelating activity increased in lima and adzuki beans after 72 h of germination. In contrast, the anti-nutrients, such as phytic acid, tannin content, and trypsin inhibitor activity, decreased significantly p < 0.05 after 72 h of germination. These results are encouraging and allow for utilizing the flour obtained from the germinated beans in functional bakery products, which can contribute to eradicating protein deficiency among some population groups. At the same time, promoting soaking and germination of the beans as a way to enhance the nutritional quality and reduce anti-nutrients can contribute to the interest in these underutilized pulses. They could be seen as an additional tool to improve food security.

2.
Biotechnol Prog ; : e3476, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687144

RESUMEN

High throughput process development (HTPD) is established for time- and resource- efficient chromatographic process development. However, integration with non-chromatographic operations within a monoclonal antibody (mAb) purification train is less developed. An area of importance is the development of low pH viral inactivation (VI) that follows protein A chromatography. However, the lack of pH measurement devices at the micro-scale represents a barrier to implementation, which prevents integration with the surrounding unit operations, limiting overall process knowledge. This study is based upon the design and testing of a HTPD platform for integration of the protein A and low pH VI operations. This was achieved by using a design and simulation software before execution on an automated liquid handler. The operations were successfully translated to the micro-scale, as assessed by analysis of recoveries and molecular weight content. The integrated platform was then used as a tool to assess the effect of pH on HMWC during low pH hold. The laboratory-scale and micro-scale elution pools showed comparable HMWC across the pH range 3.2-3.7. The investigative power of the platform is highlighted by evaluating the resources required to conduct a hypothetical experiment. This results in lower resource demands and increased labor efficiency relative to the laboratory-scale. For example, the experiment can be conducted in 7 h, compared to 105 h, translating to labor hours, 3 h and 28 h for the micro-scale and laboratory-scale, respectively. This presents the opportunity for further integration beyond chromatographic operations within the purification sequence, to establish a fit-to-platform assessment tool for mAb process development.

3.
3 Biotech ; 14(2): 36, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38221992

RESUMEN

Geophytes are herbaceous plants that grow anew from underground buds and are excellent models to study storage organ formation. However, molecular studies involving geophytes are constrained due to the presence of a wide spectrum of polysaccharides and polyphenols that contaminate the genomic DNA. At present, several protocols exist for the extraction of genomic DNA from different plant species; however, isolating high-quality DNA from geophytes is challenging. Such challenges are further complexed by longer incubation time and multiple precipitation steps involved in existing DNA isolation methods. To overcome such problems, we aimed to establish a DNA extraction method (SarCTAB) which is an economical, quick, and sustainable way of DNA isolation from geophytes. We improved the traditional CTAB method by optimizing key ingredients such as sarcosine, ß-mercaptoethanol, and high molar concentration of sodium chloride (NaCl), which resulted in high concentration and good-quality DNA with lesser polysaccharides, proteins, and polyphenols. This method was evaluated to extract DNA from storage organs of six different geophytes. The SarCTAB method provides an average yield of 1755 ng/µl of high-quality DNA from 100 mg of underground storage tissues with an average standard purity of 1.86 (260/280) and 1.42 (260/230). The isolated genomic DNA performed well with Inter-simple sequence repeat (ISSR) amplification, restriction digestion with EcoRI, and PCR amplification of plant barcode genes viz. matK and rbcL. Also, the cost involved in DNA isolation was low when compared to that with commercially available kits. Overall, SarCTAB method works effectively to isolate high-quality genomic DNA in a cost-effective manner from the underground storage tissues of geophytes, and can be applied for next-generation sequencing, DNA barcoding, and whole genome bisulfite sequencing.

5.
Front Plant Sci ; 14: 1151057, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37123843

RESUMEN

Two major future challenges are an increase in global earth temperature and a growing world population, which threaten agricultural productivity and nutritional food security. Underutilized crops have the potential to become future climate crops due to their high climate-resilience and nutritional quality. In this context, C4 pseudocereals such as grain amaranths are very important as C4 crops are more heat tolerant than C3 crops. However, the thermal sensitivity of grain amaranths remains unexplored. Here, Amaranthus hypochondriacus was exposed to heat stress at the vegetative and reproductive stages to capture heat stress and recovery responses. Heat Shock Factors (Hsfs) form the central module to impart heat tolerance, thus we sought to identify and characterize Hsf genes. Chlorophyll content and chlorophyll fluorescence (Fv/Fm) reduced significantly during heat stress, while malondialdehyde (MDA) content increased, suggesting that heat exposure caused stress in the plants. The genome-wide analysis led to the identification of thirteen AhHsfs, which were classified into A, B and C classes. Gene expression profiling at the tissue and developmental scales resolution under heat stress revealed the transient upregulation of most of the Hsfs in the leaf and inflorescence tissues, which reverted back to control levels at the recovery time point. However, a few Hsfs somewhat sustained their upregulation during recovery phase. The study reported the identification, physical location, gene/motif structure, promoter analysis and phylogenetic relationships of Hsfs in Amaranthus hypochondriacus. Also, the genes identified may be crucial for future gene functional studies and develop thermotolerant cultivars.

6.
Plant Cell Rep ; 42(5): 843-857, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37029819

RESUMEN

A current trend in climate comprises adverse weather anomalies with more frequent and intense temperature events. Heatwaves are a serious threat to global food security because of the susceptibility of crop plants to high temperatures. Among various developmental stages of plants, even a slight rise in temperature during reproductive development proves detrimental, thus making sexual reproduction heat vulnerable. In this context, male gametophyte or pollen development stages are the most sensitive ones. High-temperature exposure induces pollen abortion, reducing pollen viability and germination rate with a concomitant effect on seed yield. This review summarizes the ultrastructural, morphological, biochemical, and molecular changes underpinning high temperature-induced aberrations in male gametophytes. Specifically, we highlight the temperature sensing cascade operating in pollen, involving reactive oxygen species (ROS), heat shock factors (HSFs), a hormones and transcriptional regulatory network. We also emphasize integrating various omics approaches to decipher the molecular events triggered by heat stress in pollen. The knowledge of genes, proteins, and metabolites conferring thermotolerance in reproductive tissues can be utilized to breed/engineer thermotolerant crops to ensure food security.


Asunto(s)
Fitomejoramiento , Termotolerancia , Respuesta al Choque Térmico/genética , Termotolerancia/genética , Polen/metabolismo , Reproducción , Calor
7.
Artículo en Inglés | MEDLINE | ID: mdl-36733464

RESUMEN

During the COVID-19 pandemic, several priority diseases were not getting sufficient attention. Whilst breast cancer is a fatal disease affecting millions worldwide, identification and management of these patients did not initially attract critical attention to minimize the impact of lockdown, post-lockdown, and other measures. Breast cancer patients' conditions may not remain stable without proper care, worsening their prognosis. Proper care includes the timely instigation of surgery, systemic therapy, and psychological support. This includes low-and middle-income countries where there are already concerns with available personnel and medicines to adequately identify and treat these patients. Consequently, there was a need to summarize the current scenario regarding managing breast cancer care during COVID-19 across all countries, including any guidelines developed. We systematically searched three scientific databases and found 76 eligible articles covering the medical strategies of high-income countries versus LMICs. Typically, diagnostic facilities in hospitals were affected at the beginning of the pandemic following the lockdown and other measures. This resulted in more advanced-stage cancers being detected at initial presentation across countries, negatively impacting patient outcomes. Other than increased telemedicine, instigating neo-adjuvant endocrine therapy more often, reducing non-essential visits, and increasing the application of neo-adjuvant chemotherapy to meet the challenges, encouragingly, there was no other significant difference among patients in high-income versus LMICs. Numerous guidelines regarding patient management evolved during the pandemic to address the challenges posed by lockdowns and other measures, which were subsequently adopted by various high-income countries and LMICs to improve patient care. The psychological impact of COVID-19 and associated lockdown measures, especially during the peak of COVID-19 waves, and the subsequent effect on the patient's mental health must also be considered in this high-priority group. We will continue to monitor the situation to provide direction in future pandemics.

8.
Food Chem ; 405(Pt A): 134835, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36356361

RESUMEN

Ricebean accessions (n = 38) cultivated in India were evaluated for their comprehensive nutrient, anti-nutrients and mineral composition. Protein and total dietary fibre ranged between 23.23 and 27.33 and 12.27 to 16.69 g/100 g, respectively. Among the oligosaccharides, verbascose was not detected, however, raffinose and stachyose ranged between 47 and 186 and 117 to 5765 mg/100 g, respectively. Among the free sugars, sucrose was found dominating (up to 370 mg/100 g). Resistant starch (4.13 to 8.62 %), iron (3.49 to 7.46 mg/100 g), zinc (1.90 to 3.72 mg/100 g) and selenium (0.28 to 4.48 µg/100 g) varied significantly (p < 0.05) among ricebean samples. Phytic acid, saponin, trypsin inhibitor and oxalate analysed in ricebean accessions ranged between 303 and 760 mg/100 g, 19 to 46 mg/g, 309 to 1076 mg/100 g and 219 to 431 mg/100 g, respectively. Multivariate analysis using hierarchical clustering analysis (HCA), and principal component analysis (PCA) was employed to decipher the diversity of nutrients and anti-nutrients across the ricebean accessions. Based on HCA, dendrogram-1 (nutrients) and dendrogram-2 (minerals, anti-nutrients) were produced, having four clusters in each. In the dendrogram-1 and 2, the largest cluster had (n = 21) and (n = 15) accessions, respectively. The PCA analyse the uncorrelated set of variables (principal components) and it condenses a large set of data variables. Based on the eigenvalue >1, a total of eight PCs were formed contributing total variance of 78.8 %. The factor loading contribution in the PC1 and PC2 were from iron, fructose, glucose, raffinose and total dietary fibre, selenium (Se) and protein, respectively.


Asunto(s)
Selenio , Vigna , Almidón Resistente , Rafinosa/análisis , Minerales/análisis , Fibras de la Dieta/análisis , Hierro
9.
Front Nutr ; 10: 1224955, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38162522

RESUMEN

In the present era of climate change, underutilized crops such as rice beans and adzuki beans are gaining prominence to ensure food security due to their inherent potential to withstand extreme conditions and high nutritional value. These legumes are bestowed with higher nutritional attributes such as protein, fiber, vitamins, and minerals than other major legumes of the Vigna family. With the typical nutrient evaluation methods being expensive and time-consuming, non-invasive techniques such as near infrared reflectance spectroscopy (NIRS) combined with chemometrics have emerged as a better alternative. The present study aims to develop a combined NIRS prediction model for rice bean and adzuki bean flour samples to estimate total starch, protein, fat, sugars, phytate, dietary fiber, anthocyanin, minerals, and RGB value. We chose 20 morphometrically diverse accessions in each crop, of which fifteen were selected as the training set and five for validation of the NIRS prediction model. Each trait required a unique combination of derivatives, gaps, smoothening, and scatter correction techniques. The best-fit models were selected based on high RSQ and RPD values. High RSQ values of >0.9 were achieved for most of the studied parameters, indicating high-accuracy models except for minerals, fat, and phenol, which obtained RSQ <0.6 for the validation set. The generated models would facilitate the rapid nutritional exploitation of underutilized pulses such as adzuki and rice beans, showcasing their considerable potential to be functional foods for health promotion.

10.
Front Plant Sci ; 13: 933740, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36051291

RESUMEN

Potato is a temperate crop consumed globally as a staple food. High temperature negatively impacts the tuberization process, eventually affecting crop yield. DNA methylation plays an important role in various developmental and physiological processes in plants. It is a conserved epigenetic mark determined by the dynamic concurrent action of cytosine-5 DNA methyltransferases (C5-MTases) and demethylases (DeMets). However, C5-MTases and DeMets remain unidentified in potato, and their expression patterns are unknown under high temperatures. Here, we performed genome-wide analysis and identified 10 C5-MTases and 8 DeMets in potatoes. Analysis of their conserved motifs, gene structures, and phylogenetic analysis grouped C5-MTases into four subfamilies (StMET, StCMT3, StDRM, and StDNMT2) and DeMets into three subfamilies (StROS, StDML, and StDME). Promoter analysis showed the presence of multiple cis-regulatory elements involved in plant development, hormone, and stress response. Furthermore, expression dynamics of C5-MTases and DeMets were determined in the different tissues (leaf, flower, and stolon) of heat-sensitive (HS) and heat-tolerant (HT) genotypes under high temperature. qPCR results revealed that high temperature resulted in pronounced upregulation of CMT and DRM genes in the HT genotype. Likewise, demethylases showed strong upregulation in HT genotype as compared to HS genotype. Several positive (StSP6A and StBEL5) and negative (StSP5G, StSUT4, and StRAP1) regulators are involved in the potato tuberization. Expression analysis of these genes revealed that high temperature induces the expression of positive regulators in the leaf and stolon samples of HT genotype, possibly through active DNA demethylation and RNA-directed DNA methylation (RdDM) pathway components. Our findings lay a framework for understanding how epigenetic pathways synergistically or antagonistically regulate the tuberization process under high-temperature stress in potatoes. Uncovering such mechanisms will contribute to potato breeding for developing thermotolerant potato varieties.

11.
Front Plant Sci ; 13: 898220, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35812955

RESUMEN

The northwest Indian Himalayas are often regarded as a biological hotspot for the presence of rich agro-biodiversity harboring locally adapted traditional crop landraces facing utter neglect owing to modern agricultural systems promoting high-yielding varieties. Addressing this challenge requires extricating the potential of such cultivars in terms of agro-morphological and nutritional attributes. In this study, 29 traditional crop landraces of maize (11), paddy (07), finger millet (03), buckwheat (05), and naked barley (03) were characterized and evaluated for target traits of interest. In maize, Chitkanu emerged as an early maturing landrace (107 days) with high concentrations of zinc (Zn), iron (Fe), and potassium (K), and Safed makki showed the highest 100-seed weight (28.20 g). Similarly, Bamkua dhan exhibited high concentrations of K and phosphorus (P), and Lamgudi dhan showed a high protein content (14.86 g/100 g) among paddy landraces. Ogla-I and Phapra-I showed high contents of protein (14.80 g/100 g) and flavonoids (20.50 mg/g) among buckwheat landraces, respectively, followed by Nei-I, which exhibited the highest protein content (15.66 g/100 g) among naked barley landraces. Most of the target traits varied significantly (p < 0.05) among evaluated samples, except those associated with finger millet landraces. The grouping pattern obtained by principal component analysis (PCA) and multidimensional scaling (MDS) was congruent with the geographical relationship among the crop landraces. This study led to the identification of elite crop landraces having useful variations that could be exploited in plant breeding programs and biofortification strategies for future crop improvement. Our endeavor would aid in conserving the depleting Himalayan agro-biodiversity and promoting versatile traditional crops toward mainstream agriculture vis-à-vis future nutritional security.

12.
IJID Reg ; 2: 1-7, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35721436

RESUMEN

Background: COVID-19 emerged as a global pandemic in 2020, spreading rapidly to most parts of the world. The proportion of infected individuals in a population can be reliably estimated via serosurveillance, making it a valuable tool for planning control measures. Our serosurvey study aimed to investigate SARS-CoV-2 seroprevalence in the urban population of Hyderabad at the end of the first wave of infections. Methods: This cross-sectional survey, conducted in January 2021 and including males and females aged 10 years and above, used multi-stage random sampling. 9363 samples were collected from 30 wards distributed over six zones of Hyderabad, and tested for antibodies against SARS-CoV-2 nucleocapsid antigen. Results: Overall seropositivity was 54.2%, ranging from 50% to 60% in most wards. Highest exposure appeared to be among those aged 30-39 and 50-59 years, with women showing greater seropositivity. Seropositivity increased with family size, with only marginal differences among people with varying levels of education. Seroprevalence was significantly lower among smokers. Only 11% of the survey subjects reported any COVID-19 symptoms, while 17% had appeared for COVID-19 testing. Conclusion: Over half the city's population was infected within a year of onset of the pandemic. However, ∼ 46% of people remained susceptible, contributing to subsequent waves of infection.

13.
Food Chem ; 377: 131982, 2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-34999462

RESUMEN

Oat is a potent source of nutrients and bioactive compounds offering potential health benefits and role in combating micronutrient malnutrition problems. To exploit nutritional and quality traits of oats, a biochemical assessment of 112 oat genotypes was conducted. The high range of variability for total phenol (1.7-31.3 mg/g), ß-glucan (1.0-8.0 mg/g), calcium (1.91-4.34 mg/g), zinc (3.80-6.50 mg/100 g), iron (0.66-4.89 mg/100 g) and manganese (2.88-8.0 mg/100 g) was revealed among genotypes. A higher amount of iron and zinc was found in genotypes OS-6, HFO-638, HFO-915 & HFO-918, whereas, elevated levels of manganese and zinc were recorded in genotypes OS-403 & OL-1804. The results revealed groups of low phytic acid oat genotypes containing high crude protein (HFO-52, HFO-270, HFO-330), ß-glucan (HFO-62, HFO-588, HFO-926). A significant positive correlation was obtained between copper with iron, manganese, and calcium content. These findings could be useful for developing value-added oat food products and novel oat varieties.


Asunto(s)
Avena , Oligoelementos , Avena/genética , Grano Comestible/química , Genotipo , Micronutrientes/análisis , Oligoelementos/análisis
14.
Expert Rev Neurother ; 21(12): 1455-1472, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34756134

RESUMEN

INTRODUCTION: Dementia is a progressive neurodegenerative disorder impairing memory and cognition. Alzheimer's Disease, followed by vascular dementia - the most typical form. Risk factors for vascular dementia include diabetes, cardiovascular disease, hyperlipidemia. Lipids' levels are significantly associated with vascular changes in the brain. AREAS COVERED: The present article reviews the cholesterol metabolism in the brain, which includes: the synthesis, transport, storage, and elimination process. Additionally, it reviews the role of cholesterol in the pathogenesis of dementia and statin as a therapeutic intervention in dementia. In addition to the above, it further reviews evidence in support of as well as against statin therapy in dementia, recent updates of statin pharmacology, and demerits of use of statin pharmacotherapy. EXPERT OPINION: Amyloid-ß peptides and intraneuronal neurofibrillary tangles are markers of Alzheimer's disease. Evidence shows cholesterol modulates the functioning of enzymes associated with Amyloid-ß peptide processing and synthesis. Lowering cholesterol using statin may help prevent or delay the progression of dementia. This paper reviews the role of statin in dementia and recommends extensive future studies, including genetic research, to obtain a precise medication approach for patients with dementia.


Asunto(s)
Enfermedad de Alzheimer , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Colesterol , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico
15.
J Inflamm Res ; 14: 2091-2110, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34045883

RESUMEN

The outbreak of pneumonia caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), later named COVID-19 by the World Health Organization (WHO), was initiated at Wuhan, Hubei, China, and there was a rapid spread of novel SARS-CoV-2 and the disease COVID-19 in late 2019. The entire world is now experiencing the challenge of COVID-19 infection. However, still very few evidence-based treatment options are available for the prevention and treatment of COVID-19 disease. The present review aims to summarize the publicly available information to give a comprehensive yet balanced scientific overview of all the fat-soluble vitamins concerning their role in SARS-CoV-2 virus infection. The roles of different fat-soluble vitamins and micronutrients in combating SARS-CoV-2 infection have been recently explored in several studies. There are various hypotheses to suggest their use to minimize the severity of COVID-19 infection. These vitamins are pivotal in the maintenance and modulation of innate and cell-mediated, and antibody-mediated immune responses. The data reported in recent literature demonstrate that deficiency in one or more of these vitamins compromises the patients' immune response and makes them more vulnerable to viral infections and perhaps worse disease prognosis. Vitamins A, D, E, and K boost the body's defense mechanism against COVID-19 infection and specifically prevent its complications such as cytokine storm and other inflammatory processes, leading to increased morbidity and mortality overemphasis. However, more detailed randomized double-blind clinical pieces of evidence are required to define the use of these supplements in preventing or reducing the severity of the COVID-19 infection.

16.
Antimicrob Resist Infect Control ; 10(1): 63, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33789754

RESUMEN

Data on comprehensive population-based surveillance of antimicrobial resistance is lacking. In low- and middle-income countries, the challenges are high due to weak laboratory capacity, poor health systems governance, lack of health information systems, and limited resources. Developing countries struggle with political and social dilemma, and bear a high health and economic burden of communicable diseases. Available data are fragmented and lack representativeness which limits their use to advice health policy makers and orientate the efficient allocation of funding and financial resources on programs to mitigate resistance. Low-quality data means soaring rates of antimicrobial resistance and the inability to track and map the spread of resistance, detect early outbreaks, and set national health policy to tackle resistance. Here, we review the barriers and limitations of conducting effective antimicrobial resistance surveillance, and we highlight multiple incremental approaches that may offer opportunities to strengthen population-based surveillance if tailored to the context of each country.


Asunto(s)
Países en Desarrollo , Farmacorresistencia Bacteriana , Antibacterianos , Enfermedades Transmisibles/epidemiología , Política de Salud , Humanos , Vigilancia de la Población
17.
J Inflamm Res ; 14: 527-550, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33679136

RESUMEN

The global pandemic from COVID-19 infection has generated significant public health concerns, both health-wise and economically. There is no specific pharmacological antiviral therapeutic option to date available for COVID-19 management. Also, there is an urgent need to discover effective medicines, prevention, and control methods because of the harsh death toll from this novel coronavirus infection. Acute respiratory tract infections, significantly lower respiratory tract infections, and pneumonia are the primary cause of millions of deaths worldwide. The role of micronutrients, including trace elements, boosted the human immune system and was well established. Several vitamins such as vitamin A, B6, B12, C, D, E, and folate; microelement including zinc, iron, selenium, magnesium, and copper; omega-3 fatty acids as eicosapentaenoic acid and docosahexaenoic acid plays essential physiological roles in promoting the immune system. Furthermore, zinc is an indispensable microelement essential for a thorough enzymatic physiological process. It also helps regulate gene-transcription such as DNA replication, RNA transcription, cell division, and cell activation in the human biological system. Subsequently, zinc, together with natural scavenger cells and neutrophils, are also involved in developing cells responsible for regulating nonspecific immunity. The modern food habit often promotes zinc deficiency; as such, quite a few COVID-19 patients presented to hospitals were frequently diagnosed as zinc deficient. Earlier studies documented that zinc deficiency predisposes patients to a viral infection such as herpes simplex, common cold, hepatitis C, severe acute respiratory syndrome coronavirus (SARS-CoV-1), the human immunodeficiency virus (HIV) because of reducing antiviral immunity. This manuscript aimed to discuss the various roles played by zinc in the management of COVID-19 infection.

18.
Expert Rev Anti Infect Ther ; 19(10): 1259-1280, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33711240

RESUMEN

INTRODUCTION: Hematopoietic Stem Cell Transplantation (HSCT) is a life-saving procedure for multiple types of hematological cancer, autoimmune diseases, and genetic-linked metabolic diseases in humans. Recipients of HSCT transplant are at high risk of microbial infections that significantly correlate with the presence of graft-versus-host disease (GVHD) and the degree of immunosuppression. Infection in HSCT patients is a leading cause of life-threatening complications and mortality. AREAS COVERED: This review covers issues pertinent to infection in the HSCT patient, including bacterial and viral infection; strategies to reduce GVHD; infection patterns; resistance and treatment options; adverse drug reactions to antimicrobials, problems of antimicrobial resistance; perturbation of the microbiome; the role of prebiotics, probiotics, and antimicrobial peptides. We highlight potential strategies to minimize the use of antimicrobials. EXPERT OPINION: Measures to control infection and its transmission remain significant HSCT management policy and planning issues. Transplant centers need to consider carefully prophylactic use of antimicrobials for neutropenic patients. The judicious use of appropriate antimicrobials remains a crucial part of the treatment protocol. However, antimicrobials' adverse effects cause microbiome diversity and dysbiosis and have been shown to increase morbidity and mortality.


Asunto(s)
Antiinfecciosos/administración & dosificación , Enfermedad Injerto contra Huésped/prevención & control , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Animales , Antiinfecciosos/efectos adversos , Infecciones Bacterianas/etiología , Infecciones Bacterianas/prevención & control , Enfermedad Injerto contra Huésped/etiología , Enfermedad Injerto contra Huésped/microbiología , Trasplante de Células Madre Hematopoyéticas/métodos , Humanos , Prebióticos/administración & dosificación , Probióticos/administración & dosificación , Virosis/etiología , Virosis/prevención & control
19.
Sci Rep ; 11(1): 4186, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33603004

RESUMEN

Extraction of biosurfactants from plants is advantageous than from microbes. The properties and robustness of biosurfactant derived from the mesocarp of Balanites aegyptiaca have been reported. However, the dark brown property of biosurfactant and lack of knowledge of its biocompatibility limits its scope. In the present work, the decolorization protocol for this biosurfactant was optimized using hydrogen peroxide. The hemolytic potential and biocompatibility based on cell toxicity and proliferation were also investigated. This study is the first report on the decolorization and toxicity assay of this biosurfactant. For decolorization of biosurfactant, 34 full factorial design was used, and the data were subjected to ANOVA. Results indicate that 1.5% of hydrogen peroxide can decolorize the biosurfactant most efficiently at 40 °C in 70 min at pH 7. Mitochondrial reductase (MTT) and reactive oxygen species (ROS) assays on M5S mouse skin fibroblast cells revealed that decolorized biosurfactant up to 50 µg/mL for 6 h had no significant toxic effect. Hemolysis assay showed ~ 2.5% hemolysis of human RBCs, indicating the nontoxic effect of this biosurfactant. The present work established a decolorization protocol making the biosurfactant chromatically acceptable. Biocompatibility assays confirm its safer use as observed by experiments on M5S skin fibroblast cells under in vitro conditions.


Asunto(s)
Balanites/química , Materiales Biocompatibles/química , Tensoactivos/química , Animales , Materiales Biocompatibles/farmacología , Células Cultivadas , Fibroblastos/efectos de los fármacos , Ensayo de Materiales/métodos , Ratones , Especies Reactivas de Oxígeno/metabolismo , Tensoactivos/farmacología
20.
Infect Drug Resist ; 13: 4427-4438, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33364790

RESUMEN

BACKGROUND: COVID-19 caused by SARS-CoV-2 virus emerged as an unprecedented challenge to discover effective drugs for its prevention and cure. Hyperinflammation-induced lung damage is one of the poor prognostic indicators causing a higher rate of morbidity and mortality of COVID-19 patients. Favipiravir, an antiviral drug, is being used for COVID-19 treatment, and we currently have limited information regarding its efficacy and safety. Thus, the present study was undertaken to evaluate the adverse drug events (ADEs) reported in the WHO pharmacovigilance database. METHODS: This study analyzed all suspected ADEs related to favipiravir reported from 2015. The reports were analyzed based on age, gender, and seriousness of ADEs at the System Organ Classification (SOC) level and the individual Preferred Term (PT) level. RESULTS: This study is based on 194 ADEs reported from 93 patients. Most frequent ADEs suspected to be caused by the favipiravir included increased hepatic enzymes, nausea and vomiting, tachycardia, and diarrhea. Severe and fatal ADEs occurred more frequently in men and those over the age of 64 years. Blood and lymphatic disorders, cardiac disorders, hepatobiliary disorders, injury poisoning, and procedural complications were more common manifestations of severe ADEs. CONCLUSION: This study revealed that favipiravir appears to be a relatively safe drug. An undiscovered anti-inflammatory activity of favipiravir may explain the improvement in critically ill patients and reduce inflammatory markers. Currently, the data is based on very few patients. A more detailed assessment of the uncommon ADEs needs to be analyzed when more information will be available.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...